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Abstract—We gencralize Bueckner's fundamental ficld concept and develop higher order weight
functions for calculating power expansion coefficients of a regular elastic field in a two-dimensional
body in the absence of body forces. Problems of the first and third kind are investigated. Integral
formulas for the expansion coetlicients are given for interior points and crack tips. In these formulas
the integration is performed over the boundary of the body, crack faces included. The prescribed
boundary data (tractions and/or displacerments) of the regular field appear in the integrand in
weighted form. The weights are derived from fundamental ficlds of universal character. The sig-
nificance of these expansion cocfficients in {racture analysis is also discussed.

1. INTRODUCTION

The weight function theory was introduced by Bueckner (1970, 1973) for determining stress
intensity factors in a lincar clastic cracked body. The weight functions arc universal functions
for the given crack geometry and the stress intensity factors under any applied loading can
be calculated by using the weight functions through quadrature. Bueckner's theory is based
on the concept of a fundamental field (sce subsequent discussion) and Betti's theorem of
reciprocity. A different interpretation of Bueckner’s weight functions was given by Rice
(1972) through the notion of energetic forces and crack front motion.

Subsequent studies of the weight functions were carried out by Bueckner (1975), Paris
et al. (1976), Labbens ef al. (1976b), Wu and Carlsson (1983), Bortman and Banks-Sills
(1983), Kirchner (1986), and Kirchner and Michot (1986), among others. Recent advances
of the theory in three-dimensions have been given by Rice (1985a, 1985b) and Bueckner
(1977, 1987), and some applications of the three-dimensional theory can be found in the
works of Labbens er al. (1976a), Sham and Zhou (1989), and Gao and Rice (1986, 1987).

In a regular ficld of plane deformation without body forces, the complex stress intensity
factor at the tip of a traction free crack determines the most significant expansion coefficients
of Muskhelishvili’s analytic field functions. Since the work of Irwin (1957), there has been
a growing interest in the higher order expansion coefficients associated with cracks and
their stability. The next term in the power series expansion also plays an important role in
fracture analyses. This term corresponds to a uniform normal stress acting parallel to the
faces of a Mode 7 traction free cruck and it is often referred to as the elastic T-term. Larsson
and Carlsson (1973) and Rice (1974) have shown that the inclusion of the elastic T-term
in the small-scale yielding procedure of elastic-plastic fracture can increase the range of
load levels over which such a procedure gives accurate results. Recent work by Bilby et al.
(1986) has also indicated that the inclusion of T extends the range of validity of the small-
scale yiclding conditions at finite strains. As demonstrated by Cotterell and Rice (1980),
another significance of T in fracture analysis is that it governs the stability of a straight
crack path under Mode / loading conditions. Because of these features, the elastic T-term
serves as a biaxial parameter and it is often used together with the stress intensity factor to
characterize fracturc (Larsson and Carlsson, 1973 ; Rice, 1974 ; Leevers and Radon, 1982).

The succeeding higher order coefficients in the power series expansion are also of great
importance in certain experimental techniques for measuring stress intensity factors. These
techniques include: photoelasticity (Theocaris and Gdoutos, 1975; Etheridge and Dally,
1978 ; Sanford er al., 1981; Chona et al., 1983 ; Barker et al., 1985) ; strain-gage method
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(Dally and Sanford. 1987) ; reflected caustics in optically isotropic materials (Theocaris and
[oakimidis. 1979): and optically anisotropic materials (Phillips and Sanford. 1981). The
inclusion of the higher order coefficients permits a more accurate interpretation of fracture
data obtained at fintte distances from the crack tip. For example. Etheridge and Dally
(1978) used two additional coefficieats. Phillips and Sanford (1981) used four. and Dally
and Sanford (1987) used three. in the analysis of the experimental data.

The expansion coefficients for interior points are also of great importance in stress
analysis. For example, the coefficient of the term linear in = can be related to the force on
a discrete screw dislocation in an elastic body (Sham. 1988c¢).

In this work we are concerned with the calculation of such coeflicients at interior points
as well as at crack tips. To this end Bueckner's (1970) fundamental fields are generalized.
As in his theory. the reciprocity theorem is applied to the regular field. the expansion
coefficients of which we wish to determine, and to an appropriate fundamental field. This
procedure leads to integral representations of the coetlicients. The integral extends over the
boundary of the elastic body: the prescribed boundary data (tractions and/or dis-
placements) of the regular field appear in the integrand. multiplied in work-like manner by
the energy-conjugate data of the fundamental field as weight function.

The synopsis of this paper is as follows. Preliminarics are introduced in Section 2,
including some general results to be used subsequently. In Section 3. Bueckner's (1970,
1973) fundamental field concept and elastic reciprocity are used to develop integration
formulas for determining these expansion cocetlicients at ainterior points and crack tips
through the higher order weight functions. Modifications to the integration formulas for
problems involving both traction and displacement boundaries are given in Section 4. The
construction of fundamental ficlds for closed-crack geometry is discussed in Section S, In
Scction 6, generalization of the results to infinite domains is given. Integration formulas
are also applied to evaluate the expansion coeflicients of a semi-infinite crack in an infinite
body under certain special loading conditions, These spectfic applications are chosen because
results for the fundamental ficlds and the stress-analysis problems can be obtained in closed
form, and thus allowing a demonstration of the soundness of the theory. Further extension
of the theory to include body forces in the clastic field 1s also discussed in Section 6.

Recently, Sham and Buceckner (1988) have employed the concepts of the fundamental
field and elastic reciprocity to develop weight functions for determining the notch-interface
stress intensity factor in a piccewise homogencous, isotropic body deforming in antiplane
strain. The theory introduced in this paper can be generalized to determine higher order
expansion coeflicients for notch tips. By using Rice’s energetic approach, Parks (1979) has
given a procedure to calculate the stress concentration factor by means of weight functions.
It can be noted that the present theory can also be extended to determine expansion
coeflicients at smooth boundary locations.

2. PRELIMINARIES

Consider an clastic body under plane deformations. Let x, y be the Curtesian coor-
dinates and = = x+iy be a complex variable with i being the imaginary unit. Then in the
absence of body forces any elastic ficld in the body may be expressed in terms of two
analytic functions of z, ¢(=) und () (Muskhelishvili, 1977). However, it is more convenient
to cxpress the elastic state by the analytic functions ¢ and p, where p = Y +:2¢". The
displacements, « and v, and the in-plance stresses are then given by

2w = uu+ir) = k() —-;“)(?) +(E=2)¢(2) (la)
e = Re [¢(2)+2¢°(2) = p'(2) + (5 —2) 7 ()] (1b)
Ty =Re [P’ +p (D) =(G~2)"(2)] (1)
o= —Im [ (D) =p () + (=2 P"(2)] (1d)

with
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k =3—4v (plane strain)

3—v .
K= i (generalized plane stress)

where u is the shear modulus and v Poisson’s ratio.
The preceding representation is not without ambiguity. Necessary and sufficient to
yield a field of vanishing stresses are functions ¢(z). p(z) of the form

¢(2) =a+icz, p(z) = b+ic: (le)

with arbitrary complex coefficients a. b and an arbitrary real coefficient ¢. The associated
displacement ts a rigid body motion given by

2uw = kau—b+i(x+ ez, (1)

The components of the traction vector attacking the material to the left of an oriented
arc element ds in the x- and y-directions are X and Y respectively and they are given by

Zds=(X+iY)ds = =i dP (2a)

where
P = P() = $p() +p() + (: = $7(): (2b)
P(z) is not an analytic function in gencral, Also, if N = n,+in, where n, and n, are the

Cartestan components of the unit normal pointing to the right of the oriented arc element
ds

z dz -
’(E——-.IN, a}-— —iN

and we may express the tractions as
Z= N+ 1+ NP —p +(E-2)¢"). (20)
Using eqn (2b), the displacments may be written in the form
2uw = (1 +K)p—P. 3)

The resultant force and the resultant moment about the origin, produced by the tractions
acting on an oriented curve I, are respectively

—ij dP and —ch:’dP. 4)
n n

Let ¢. p be regular along IT; this makes P continuous on [1. Let IT be either closed
or, if open, such that P takes the same value at its end points. In this case integral (4),
vanishes, i.e. the tractions acting on IT have zero force resultant. As for the moment,
integration by parts is used and it is found quite generaily
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Fig. 1. Finite plane elastic body R with bounding surface ORI is a simall aircle centered at an
interior point, = = 0, and T1 = AR O T bounds a sub-domain of R.

—RCJ 2dp = ch P di-Re P3 I = ch P dz - Re /’5]'
11 " o i1 NN

Re | [f+p+(E=2)d"] dz=Re "5]‘
1 <

o

M

it

=Re| [ dz—¢p dZ+(p+p) dz] +Re [(:‘~—:)</)—~I’:']l
1 .

Y

=Re | [p+p] dz+Re [(5—:)(/,4):1] (5)
11 .

LY

where another integration by parts was used to convert the integral with ¢ ; and ', (" are
the end points of {1.

Consider two clastic states distinguished by the subscripts I, 2 for the plane body R
shown in Fig. 1. Let Z be an oriented, piecewise smooth curve in R, going from a point '
to another point {”. Along Z, the work done by the tractions of state j on the displacements
of state k is given by

I

W, (Z) f (XY, u,+ Y,r,) ds = Re J (XY+1Y),(u—1r), ds

-—RciJ‘.u",, dP,=lmj»I-k dP,; j k=12 (6)
Consider the difference in works
WHE)= W, — W, = Im'[ (%, dP, —iF, dP.) (7a)

which, by (3), may bc written as
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W)= ;'; Im J: [P, dPy—P. AP, + (1 +K)(P. AP, — &, dP.)]. (7b)

Obviously
[mi(ﬁ| dP:-P: dPl)=[m£(P| dP2+P: dﬁ|)=lm Ple] .

Y

Furthermore

e

N

ImJ: (. dP, —$, dP;) = [mﬁ(P: dd,— P, dd:)+Im [(5:P|‘q$|P:]]
by integration by parts. More explicitly
lmJ:[P: dé,— P, dé;] = |mj [Py dp:— P, do]

=Im J: ([P dp2=: dpy+p, dpy—p, dp + (E=2)(P) dop, — " deé )]

Here
1 dp—drdp, =0,
also
Im [§, dp; =, dg\] = Im [, d¢py+¢; dB\] = Im d[,¢.]
hence

l‘“j [Py dd,— P, dd,] = Imj [pdp2—p:do ]+ 1Im ‘514’2}_;
Putting all picces together onc obtains

l+x | _ -
W*(X) = -,“‘ lmj:_(l’l dpr—p, dop))+ ‘.3‘,: Im [P, Py+(! +K)(‘51Pl_‘ﬁlPl+(ﬁl¢2)1]_"

An cquivalent representation is obtained from

Lm dé; = —J;sz dp.+p.¢z]f,

This leads to
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Wo(E) = — " ImJ; (p: déy+é: dp)) +1Im G] (8)
with
G =P —(1+REIP+ (1 +RIP ~ (B, + 015
- Pt '—21;5[1’.—(¢.+ﬁ.)1<52
= — Pyt ';"(:-:‘)E¢:. )

The preceding formulas can be extended towards a union of oriented arcs.

Before we proceed to develop the weight function theory, we first distinguish two kinds
of elastic fields: namely, regular fields and singular fields. Regular fields are fields of
displacements, strains and stresses which produce finite elastic energy of deformation in
any sub-domain of the body. Continuously imposed displacements and/or tractions along
the boundary yield regular ficlds in particular. We permit the strains and stresses of a
regular field to be unbounded at certain boundary points, and an example is the elastic K-
field for cracked solids. Singular ficlds are elastic ficlds which generate infinite elastic energy
of deformation in the ncighborhood of a special (singular) point. Exampies of these ficlds
are solutions to clastic boundary value problems of point forces and dipoles and fun-
damental fields in notched and cracked bodies (Bueckner, 1970; Rice, 1972 ; Sham and
Bueckner, {988).

3. PROBLEMS OF THE FIRST KIND

3.1. Interior points

Consider a body R of finite size loaded by prescribed tractions on dR where R is the
boundary of R (Fig. 1). It is assumed that there are no body forces. The elastic field in R
is assumed to be regular. In the neighborhood of any interior point, say the origin, - = 0
in R, the field functions ¢, p have expansions

$()=Y a2, p(z)= Y b=, a,.b, =complex coefficients. (10)
n=0

nae)

Here it can be assumed a, = 0, by = 0. This is no essential loss of generality since it effects
rigid body motion only.
Next, consider a singular field

vy PR 2 m
¢m(-) - |+KAm- s p»-(-) - I+I\TB’"- (ll)

where m is a positive integer and 4,, and B, are some complex coefficients. Since ¢, and
pn and their derivatives are continuous everywhere in R except at = = 0, they yield a
continuous P and thus a zero force resultant on any piecewise smooth contour in R which
does not pass the origin. Duc to (5) the corresponding resultant moment is also zero exept
when the contour encircles the origin and m = |. For m = |, the resultant moment is
[(—4nu)/(14+x)] Im (4,+ B,) if the contour is traversed in an anti-clockwise direction
around =z = 0. The elastic field (11) gives rise to surface tractions on dR. These surface
tractions will be relieved by a complementary regular field, ¢/, and p,, to obtain
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bm=Gn+bn. Pn=pntpn (12)

where the elastic state characterized by ¢/ and p/, will be referred to as a fundamental field
of order m. The fundamental field so constructed has no body forces and it induces zero
tractions on &R. It is clear that the regular field ¢.,. p;, does not exist for m = | in general.
In this case we restrict (11) by

in order to ascertain (12).

The two elastic states considered in the previous section are chosen as follows. The
elastic state ¢, and p, is the regular field with expansions (10) near = = 0. The second elastic
state is the fundamental field ; namely ¢, = ¢/ and p, = p/. Let I1 be a boundary which
consists of R and " (Fig. 1). Here I" is a small circle of radius y centered at the origin. 1
bounds a sub-domain of R in which the two states are regular. The reciprocity theorem
applies and one may write

W) = W*@R) + W*(I) = 0. (14)

Since the first term of eqn (14) is independent of 7 50 must be the sccond term W*(I). Now
d P, vanishes on dR; thus, using (7a), one obtains for the first term

W*@R) = lmJ\ W, dP,. (15)
R

Al

Near the origin, ¢, = ¢), and p, = p;,. With the aid of (8), one can express W*(IM) as

l .
W)= - *;_,;;' lm_[r(ﬂ,'.. dd,+ ¢, dp ) +03). (16)

The boundary term of (8) does not contribute because I is a closed path and function G is
continuous on I'. The term O(y) stands for and represents the order of the contribution of
S Pr- (Actually that contribution vanishes.) One now substitutes eqns (10) and (11) into
eqn (16) to obtain

W)= ~Im Y | (Bud,+Anb)n=""" ' dz40(y)
nel JU

= 2nm Re [B,dn+ Anba]+ O(7). (17

In the limit y — 0 one obtains the following formula for determining the coefficients «,, and
bn:

1
Re (B,,,(lm'l"'A,,,b,,,) = - m lmj ﬂ‘z dP| (18)
IR

Generally, four fundamental fields are needed in order to determine the two complex
coefficients a,, and b,,. These fundamental fields are obtained by choosing the coefficients
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Table |. The values of A,. B, to be set in (11) for

obtaining the appropriate fundumental field which deter-

mines the coefficients of expansions, 4,,. b,,. of the elastic
field at intenor points

Coeflicient to be determined A, B,
Re a,, 0 1
Imq,, 0 —i
Re b, l 0
Iméb,, —i 0

A, and B, in eqns (11) and (12) as in Table 1. It should be kept in mind that the
complementary regular fields ¢,. p,, depend on the choice of 4,, and B,,.

Form = 1. A, and B, are not arbitrary but are restricted by (13). One can determine
Re a, and Re b, by choosing the pair (4. B,) to be respectively (0. 1) and (1.0) as before.
But one can only determine the combination Im (a, —b,), by setting (4,, B)) = (i, —1).
However, for a pure traction boundary value problem, more information on a,, b, is of no
interest since its effect shows up in a rigid body rotation only. If we denote the displacements
of the fundamental fields of order m by wf,. tf,. then (18) may be rewritten as

|
Re [Bm“m + Ambm] = ! j [‘Yl“r{v + Yll'nrr] d‘ “9)
OR

T 2m s

Inanalogy to the weight functions introduced by Bueckner (1970, 1973) for determining
stress intensity factors in cracked bodies, the displacments «), and ¢} are referred to as
weight functions of order m for the interior point 2 = 0. [t is noted that for problems of the
first kind, the weight functions are unique up to an arbitrary rigid body motion.

3.2, Crack tips

3.2.1. Regular fields and fundamental fields. We now turn to the consideration of
expansion coceflicients at crack tips. Consider an open crack in a finite body loaded by
continuously imposed tractions on the external boundary ¢R (Fig. 2). We shall employ

\ 4

4 L IR ]

Fig. 2. An open crack in a finite body R with a bounding surface consisting of 2R and C,, C.

(upper and lower crack faces). Crack face loadings of the induced type are admitted in the interval

(=L.0). C’, and C". are the portions of C, and C_ outside ". Q@ =RV C’, U’ bounds a
sub-domain of R.
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both Cartesian (x, y) and polar (r, 8) coordinates with the origins being placed at the crack
tip. [t is assumed that there are no body forces present in the body. We admit loadings on
some portions of the crack faces, C, and C_. However, we restrict the crack face loadings
to be of the induced type and this means that the traction vectors at two opposing points
on the crack faces are equal and opposite to one another. Near the crack tip, we consider
a continuous crack face loading in the interval (— L.0]. and we shall represent this crack
face loading by a convergent series for the said interval as

O +io, = f(x)= Y fiX, —L<x<0. onC,.C_ (20)
k=0

where f, is complex in general. A theorem given by Bueckner (1973) states that if the elastic
field has finite energy in the neighborhood of the crack tip, and if ¢’ and p’ are continuous
in the neighborhood of the crack tip (excluding = = 0). then the functions ¢ and p admit
expansions

¢() =Y a . p() =Y b, (21a)
n=1 n=1
for |z} < L. In particular
. . n . n_
b, = d, for n = odd, ;,h,, = fin 22— @, fOr n=cven. (21b)

It has been assumed that the origin remains fixed.
Consider the following singular ficld for the cracked body :

2

2 24
l+x

-mm2 ¥ mt |
‘Am~ ’ ’ pm = (— l) l“:-'\:

Apz 3, (22)

(blill =

where m = positive integer, A,, = complex coeflicient. For this field P = 0 on the negative
x-axis; it therefore gives zero tractions on the crack faces but the tractions are non-zero on
any oriented, piecewise smooth curve, I'*, originating from a point {’ on the lower crack
face to any point{” on the upper crack fuce. However, these tractions lead to a zero resultant
force on ™ and this follows directly from (4),. The resultant moment, M, produced by
these tractions is, from (5),

M = Re j {pm+ ] dz.
r.

Now let {” = {’. We find that the integral is zero for even m, m # 2 and itis purely imaginary
for odd m. Thus M is zero for all singular fields ¢, and p}, except m = 2. For m = 2, we
obtain M = [(—8nu)/(1 +x)] Im A,.

The tractions of the singular field (22) on the external boundary ¢R are non-zero in
general. Since we can choose ' to be R, the tractions on ¢R are sclf-equilibrated for
m # 2. We shall remove these surface tractions in the customary manner by a comple-
mentary regular field, ¢, and p/,. This regular ficld can be represented by

=3 B:=", pn=7Y (~1)*'B,*; B, =complex coefficicnt (23)
J=1 Jml

near the crack tip. Of course, such a field leaves the crack faces traction free. The resulting
field
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=+ ph=pu+rn (24)

is referred to as a fundamental field of order m for the crack tip. The fundamental field has
no body forces. It exists for all values of m except m = 2 where in this case we must insist
on

ImA,=0 (25)

in order to ascertain the existence of the complementary regular field for m = 2. Altogether
the fundamental field has no body forces and shows zero tractions on C.. C_ and ¢R.
Using (3). we find that the displacements of the fundamental field have the asymptotic form

wh~d,2"" asz—0 onC,,C_. (26)

3.2.2. Elustic reciprocity. We shall now analyze at - = 0 the regular ficld characterized
by (20). (21a). (21b). The functions ¢, p of that field will be referred to as ¢ . p, respectively.
Let ¢.. p- describe a fundamental field of order m, as given by (24).

Consider an oriented closed path Q (Fig. 2). which consists of ¢R. of crack segments
C.. C and of a circle [T with radius y < L and also sufficiently small such that the interior
of the path is a sub-domain of R. We shall refer to the union of C,, C_ collectively as C:
and similarly, C” denotes the crack segments C,. C* . In this sub-domain ficlds | and 2 are
regular; the reciprocity theorem, applied to the two ficlds, yields H™*(Q) = 0 or, in more
detadl,

W) = —~W*(C)=W*((R). 27N
It will be convenient to set
W) = WHQ)+ W2 ()
for certain paths Q'; here the subscript s refers to the singular field @, p}, and to field [,
while the subscript r pertains to the regular complementary ficld ¢}, pr, and to ficld 1.

Turning now to W*(I") we have W*([') = WX([)+ WX([); evidently W*(T) = O(y).
Duc to (8) we find

Cmye

l .
WXr)=— %—t't lmJ;_ [ph, dd+ ¢, dp ]+ Im G;] ; (28)

=y et

but the associated G, vanishes at the ends of I since P, = 0. The expressions (21a) and (22)
permit us to write

WwHxr)y= —Im ‘il D,.J, .., with (294)
Dy = 51(= )" Aty + Aubs] - and (29b)
Ji = '[_:"‘ S gz, (29¢)
We observe that Jo = — 271 and that
Ji =0 fork # 0 and even. (30)

For odd £ we find



The theory of higher order weight functions for linear elastic plane problems 367

4i . . |k=n
Jk = - E/k sin [7] (31)

Using (21b) we may rewrite D,,,. We obtain in particular

D,, = g[—/i,,,a,,+A,,,ﬁ,,] for m = even, n = odd (32)
Dmn == g[-gman+Am5n] +Am (n—-2%2 ror m= Odd' n = cven. (33)
Also
m_ -
Dy = — 5 (At + Amin] + A fim- 22 for m = even (34
m_ .
Do = 5 [Ann+ And,]  for m = odd. (35

From here on we pursue the cases of even and odd m separately.
3.2.3. Fundamental ficlds of even order (m = cven). Using eqns (29-35) we find
WHI) = =2am Re [A,a,]+ 21 Re (A fim . 22)- (36)
Turning to the contributions of the crack segment C” we observe first that
Ww*(C’) =0. (37)
Indeed the singular field of ¢;,, p;, has no tractions on the crack faces. Its displacements
are the same on opposite crack points (a consequence of m = even). Since the tractions of
field 1 are of the induced type their total work through the displacements of the singular
field vanishes. We may now write
W*(C’) = WX(C). (38)
Combining all partial results, we obtain from (27)

=2nm Re [A,a,]+2n Re [A, fim- 2]+ 0@G) = = W2HHC')— W*(R). (39)

Next we let y — 0 and arrive at the relation
Re [A _ ! W*(C)+ W*(2R Re | A lf (40)
¢ [ mam] - 2’""[ ’ )+ (L )]+ ¢ m," (m-22 1

Finally we express the W*-terms on the right by the work integrals involved and arrive at
the final form of the integration formula

- 1 1
Re [A.an.] = 7~ (Xl + Y h]ds+ | X+ Yiel)lds |[+Re| A~ fim oz |-
2am| Je 'R m
41

Here X, Y, represent the tractions of ficld 1; u). v}, are displacements of the fundamental
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field and . ¢, are those of the complementary regular field. We note that once /. v/ are

known. the displacements u/,. t7, can be determined from
W, = uf— ., U, =10,
where .. v3, are the displacements of the singular field given in (22).

Generally, we need two fundamental fields of even order m to determine the complex
coefficient a,,. To find Re «,,. we can choose a fundamental field corresponding to 4,, = 1
while we can take A4,, = i for determining Im a,,. For m = 2, the restriction (25) implies
that the coefficient Im a, cannot be determined by the integration formula and is left
arbitrary. Fortunately. [m a. is only related to rigid body rotation and we can set it to zero
for definiteness. The b, follow from (21b).

3.2.4. Fundamental fields of odd order (m = odd). In this case, the analogue of (36) is

W*() = 2am Re [d,a,]+H with (42a)
4 v
H= 3% ;:;y‘" M sin [(n—m)n/2] Re [A,, fin 2] (42b)

Setting m = 2k + | and n = 2, we may also write

¥ 7(____’,)1—1( i )
= Loy S Re Ul

Form > 1 (k > 0), H is generally unbounded in the neighborhood of y = 0. We therefore
cannot expect W) to reach a limit as y — 0. But let us assume that

fi=0 for r<(m=1)2=k. (43)
In this case we find #H = ()(\/;'). Hencee
W*() - 2nm Re [A,a,] asy—0 (44a)
and also
W*() - 2am Re {A,a,] asy—0. (44b)
Because of (43) the integral W*(C) exists and we have
Im()) W*(C’) = W*(C). (45)
All of these permit to state as analogue of (41)

- 1
Re [A,a.] = — sl B (Xl + Y, vl] ds. (46)

For m = | this formula was first given by Bucckner (1970, 1973). [n this special case the
restriction (43) is void. The complex coeflicient a, is related to the stress intensity factors
K, and K, by

A‘l “iK” = \/E—T;(lb

As before the coeflicient a,, can be determined with the aid of two fundamental fields,
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characterized by 4,, = | and A4,, = i. If the restriction (43) does not apply one can modify
the field functions ¢,. p, into

é. =01 f=p —p2) 47

where p(:) is the polynomial
1
p) =Y Efk_.:" where 2n+1 = m. (48)
k=1

The regular field of @,. 5, abides by (43). and formula (46) becomes applicable with respect
to the regular field .. 0.

[f there exists a small neighborhood, —¢ < x < 0 on the crack faces near the crack tip
which is free of tractions, the restriction (43) on or the modification (47) to the field ¢,. p,
can be disregarded and the integration formula (46) is valid for any odd m. In addition.
the integration formula (41) for even m can be simplified since all f; vanish. Furthermore,
as has already been explained, the work done by the tractions of field | through the
displacements of ¢,.. p;,. m = even, on the crack segment C is zero, and we cian superpose
the displacements u},. vy, onto «),, i, in (41). Thus, when a traction-free neighborhood on
the crack faces near the crack tip is present, the integration formulas (41) and (46) can be
combined as

(=n"

Re [/7,,,“,,'] = 2”7""1

f [Xiul+ Yok ds: for all m. (49)
CUOR

4. PROBLEMS OF THE THIRD KIND

When the plane body is subjected to a combination of continuously prescribed tractions
and imposed displacements on the boundary, the integration formulas developed in the
previous sections will have to be modified somewhat, In addition, new fundamental fields
have to be introduced in order to determine the coeflicients of series expansions which are
related to rigid body translations,

4.1. Interior points

Let the body R with boundary R of Fig. 1 be loaded by prescribed tractions on 2R,
and under imposed displacements on R, where IR, U 2R, = JR. Because of the geometric
boundary conditions on JR,, we have to admit a4 # 0, b, # 0 in the expansions of ¢, p
about z = 0 given in (10). The singular field ¢;,, p;, of (11) is still essential but it will give
rise to non-zero tractions on dR, and displacements on dR,. These surface tractions and
displacements will be relicved by a complementary regular field, ¢, and pl,. in order to
construct (12). It is clear that ¢/, p, exist for all values of m = 1, because of the geometric
boundary conditions on JR,. Hence the restriction (13) for the case of m =1 can be
dropped. The fundamental field obtained by such a construction has no body forces and it
induces zero tractions and displacements on R and dR,. respectively. Equations (14), (16)
and (17) will still hold but (I15) now becomes

W*(R) = W*(@R,uiR)=1Im [J‘ W, dP, —-J‘ W, dP:]; (50)
'R,

Rp

formula (17) does not change if the summation is extended to n = 0, and the integration
formula (19) is modified to
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Re [B.a,+ Ab,] = — T~ [j (X up+ Yf) ds-[ [(Xlu,+Yir]ds :l: form>0

5hH

where X/. Y/ are the tractions of the fundamental field of order m. So much for the
coefficients a,,. b, of subscript m > 1.

Turning now to the case of a,. b, we observe that the rigid body translation at the
origin is given by

2w (0) = xa, —by. (52)
This shows that the coefficients . b, are partially redundant. Thus we can only expect to
determine the preceding combination but not the individual coefficient. In order to develop

an integration formula for w(0) we consider the following singular field ;

‘) 2

b= Ao log s pi= - log z = log r+if. (53)
This singular field yields single-valued displacements
W= “l’:': log r+ li (1—=¢™), r#£0. (54)
Furthermore
2u L 20
= +k{(l —K)Ay log r+ (1 +r) A0 — A, (1 ™). (55

The singular field @§, pi gives non-zero tractions and displacements on R, and JdR,.
respectively. We shall relieve them by a complementary regular field ¢4, p} and construct
a fundamental ficld of order zero as

= ¢u+do. pl=putpi (56)

As before, this fundamental field has no body forces and it induces zero tractions and
displucements on JR and 2R, respectively.

We now apply the reciprocity theorem to the regular field of ¢, p,; and the fundamental

field of the pair ¢§. p/. As before W*(I') and the limit procedure y — 0 are of central
importance. In analogy to (16) we find

where {* = ye'"and {” = ye ™™ Since d¢,, dp, are independent of gy, b, the integral in (57)
will not contribute to a formula for w,(0) ; a crude estimate of the integral is

J [ps déy + 45 dp,] = O(yllog y)).t (58)

As for the G-term in (57) we can observe that [sec also (53)]

t Onc can show that the right hand side can be replaced by O(;).
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G] = —wl(—-/)m,]: = dmipdow,(—7) = dnipdo#, (0)+0(), (59)

. N

so that
W*(I') — dnu Re [Ayw,(0)] asy—0. (60)

Combining this with (14) and (50) we obtain the integration formula

- 1
Re [A()H'*(O)] = - m[J:R [¢Y|u,{.+ Y\l',{,] ds—J:R [ll‘X;,r.-FL“ Y,{.] ds] (6[)

The real and imaginary parts of w,(0) can be obtained by choosing 4, to be | and i.
respectively.

4.2. Cruck tips

As in Section 4.1 we assume tractions on d R and displacement conditions on @R, ; the
latter shall not involve the crack faces. We also assume (21a). (21b). The geometric con-
ditions on the regular ficld ¢, p, require the inclusion of n = 0 in the local expansions of
the two analytic functions in (21a). But unlike the other complex coeflicients in (21b), aq.
by are unrelated. For m = | we shall still employ the singular ficld ¢;,. p;, given in (22) for
the cracked body but the complementary regular ticld ¢),. pf, of (23) is chosen such that
the fundamental ficld ¢/, p/ constructed in (24) shows zcro tractions on dR, and zero
displacements on @R,. Further, the complementary regular ficld will exist for m = 2 even
without the restriction (25) because of the presence of geometric boundary conditions on
CR,.

Following the basic procedure that led us to the integration formula (41) for the
complex coefficient a,,, with even m, we obtain the modification

Re [A,.a,] =%';[J;[X|“:n+ Y] ds+ (X\ul+ Y,vf] ds

oR

|
—-J. (XLu,+Yiv] dsJ+Rc [A",;f(,,._z,,z:l; meven. (62)
OR,

For odd m, the integration formula (46) changes into

- | .
Re (4,4, = — ———I:L y (X\ul+ Y0l d.s‘-—J.R (XL +Y/r] ds]. (63)

2nm A

Further, when there is some neighborhood of the crack tip in which the crack faces
are free of tractions, the presence of prescribed boundary displacements changes formula
(49) to

: (=D

[j (X uf+ Y el dS—J (Xiu,+ Y] ds]; for all m > 0.
CudR, R,

(64)

In (62-64). X/ and Y/, are the tractions of the fundamental field ¢Z. p4.
As to the determination of w,(0). we consider the following singular field :

8AS 25/4-C



372 T.-L. SHam

y
p—— P 9
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]
Fig. 3. A closed crack extending from = = —Ito : = 0 in a finite body R.
bh = pdy log =, ph = —pd, log =. (63)
Such a ficld yields
Py = pf24,i0 - (1 —c:‘")iu] (66)

which is constant on 0 = +r and by (2a) the tractions of ¢y, py vanish on the crack faces.
The singular ficld ¢5. pf is augmented in the usual manner by a complementary regular
ficld ¢}, g} to arrive at a fundamental ficld ¢/, pé which has no body forces and gives zero
tractions on €, R, and zero displacements on 2R,

Following the procedure established in previous sections, we apply the reciprocity
theorem to the two fields ¢, p, and ¢, p{ in the sub-domain of R bounded by the contour
which consists of a circle [, of crack segments ¢ and of dR, and 2R,. We find

W2(r) = O(/7). (67a)
14k ¢ 3
W) = — S, m J s dgy + % dpy]+1m c] (67b)

LY

Here the order relation (58) applies to the integral-term, As before the boundary term is as
in (59) with O(y) replaced by O(ﬁ). Altogether, in the limit y - 0 the reciprocity theorem
leads to an integration formula for the rigid body translation of the regular field at - = 0:

- 1 A ,
Re [Ayw,(0)] = — 4~;}:[J; y (X )+ Y \oh] d.s‘—-J:R [(Xlu,+ Yie] ds] (68)

where Re [w,(0)] can be determined by choosing Ay = 1 and Im [w(0)] by setting A, = i.

5. FUNDAMENTAL FIELDS FOR A CLOSED CRACK

The crack configuration which we have considered thus far is the open crack. [t is clear
that we cannot use the singular field of an open crack in a closed crack geometry because
it would cause undue crack openings on some portions of the crack plane. However,
guided by the procedure that we have developed for the open erack. we can construct the
fundamental field for a closed crack in the following manner.

Take a finite body R which contains a crack, extending from x = —{to x = 0, Fig. 3.
The singular field ¢, p;, given in (22) for m = even, m # 0, is still valid for this closed
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crack geometry since (22) yields continuous displacements in R outside the closed crack.
But this is not so for odd m. We therefore shall construct an appropriate singular field of
odd order for the closed crack geometry depicted in Fig. 3 as follows.

First, we define a polynomial of degree nin z, ¢,(z). as

A ESNE
q.(.-)g:/—lgn( . )[7] S on=1,23,... (69a)

and let
Fo2) = J(z+Dz F,>0 forreal z > 0. (69b)
Then the function F,(:) defined by
F(2) = ¢, () F(2)z7" (70)

has branch points at - = 0 and - = —/and is holomorphic in the z-plane outside the crack.
In order to investigate the behavior of F,(z) near = = 0, we first note that (69a) can be

rewritten as
| = - 172 I Y _% - k
"~‘:’7['+7] ‘y‘;k.?,<k)[7] 7

Then we have

. AT
Gn 2V (2) = \/:[I _\/l+ } ,‘Z.:,, ( kz) [7] } 7

and since

we can rewrite (72) as

) - K
4o 1 (D) Fo(2) = \ﬂ[l -y 72"[?] jl (73)

k=n

with certain coeflicients y; ~'. Using (73) we can represent the function F,(z) near z = 0 in
the form

° P
F,(2) = :~n4'-l/2_1«~n+l,f2 /Z/I Z 72::[3] . (74)
k=0

Ncear z = —/the same function admits an expansion of the form
F,(2) = /=41 Y Bi(z+D*. 75)
k=0

Now with the help of F,(c) given in (70). we construct the following singular field of
order m = 2n— 1 for the closed crack geometry:
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K 2“ B 2[1. -
O = ————l +ICAMF‘M* 0.203). pm = ~——l +KAMFW- n2(2). modd. (76)

This field is regular outside any neighborhood of = = 0. Within such a neighborhood it
differs from (22) by a regular field. It can be shown that the field of (76) has no tractions
on the crack faces. On any closed loop around the crack the tractions are self-equilibrated
while the stresses vanish at infinity. Boundary tractions on ¢R; and displacements on ¢R,
can be compensated to zero by a regular field ¢,,. p;,. We therefore complement the singular
field (76) by this regular field to construct, similar to (24). a fundamental ficld ¢.. p/.. As
in the previous considerations, this fundamental field has no body forces and it shows zero
tractions and displacements on ¢ R and éR,. respectively. With some minor modifications.
the procedure given in the previous sections for applying the reciprocity theorem can be
repeated for the closed crack geometry. We find that the complex coefficients a,, (m = odd)
of the expansion of the elastic field about = = 0 can also be determined by the same formulas
(46) [with appropriate restrictions (43), (47) and (48)] and (63).

To determine the rigid body translation at = = 0 in the case of problems of the third
kind, we can employ the following singular field :

2 K—1 2ud K—|
by = Il;: l:log o+ - 5 /1(:)J. o= l;:[—x log -+ 5 h(:)} (77a)

where

h(z) = =2log [l—«t\w/—gi*(ﬁ:)] =2log [-2\/-1512):] (77b)
2 L+/z/(l+2)

Here the square-roots are to be taken as the main branch, i.e. with values in the right-hand
half-plane. This implies that the arguments under the log-function in (77b) are also in that
half-plane. The main branch of log is to be used. The function A(z) so defined is holomorphic
outside the crack, z = o included. On the crack it has the important property

Re [h(x)] = 2 log 2—log {+log |x|. (78)

It follows from (55) and (78) that the singular field of (774) has no tractions on the crack
faces. The field is the response to the point force @ = —4nud,, attacking the end point
= = 0 of the cruck. At the other end point = = —/ the field behaves like a regular one.

With the aid of the singular ficld (774, b) and its complementary regular ficld, we can
construct an appropriate fundamental ficld for the closed crack geometry. Once agiin we
can repeat, with some minor changes, the procedure of the reciprocity theorem and obtain
the same integration formula as given in (68) for determining the rigid body translation at
= = 0 in this closed crack gcometry.

6. UNBOUNDED DOMAIN AND OTHER GENERALIZATIONS

So far the integration formulas for the coefficients a,,, b,, have been established for
finite bodies. With suitable conditions on the surface tractions and geometric boundary
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Fig. 4. A semi-infinite crack. Crack face tractions of the induced type are applied in the interval
(—~T.0). In (—L.0). these applied tractions are represented by the power series of (20). C denotes
the upper and lower crack faces and C” is the crack segments within (— 7.0).

data the formulas can be extended to certain infinite bodics as well. We shall show this for
the whole z-plane cracked along the negative real axis, Fig. 4.

6.1. Semi-infinite crack in infinite domain

Let the crack be loaded by tractions of the induced type; no other load (including at
z =) is admitted. Going back to (2a) we can describe the load with the aid of
P\(x) = ¢(x) +p,(x). For a bounded and Holder-continuous P,(x) Bueckner (1970) has
given the responding regular field in the form

d\(2) = —\/:': ! l_’[(’)_d_l_ T ro —‘m‘!’_

L o)==Y= :
2n J .. \/M('._-_-) I ) m(l-:)

Let now Py(1) = 0fors < — T < 0 and let also (~ T, 0) contain the interval (— L,0) along
which the tructions are prescribed in the form (20). From (79) it then follows that the
quantities w, Z, obey the asymptotic relations

(79)

wy = 0(z]7"Y), Z, =0(=""), asz— 0. (80)

We now consider the regular field within the disk |2] € R (> T). Its circular boundary is
[y; the crack portion within (—T,0) is denoted by C’. We shall apply the coefficient
formulas of Section 3 to this finite configuration in a4 modified form. To this end we observe
that the formulas stay valid if we use ¢, = 0, p}, = 0in (24) while replacing W*(CR) in the
form (15) by the extended and original form (7a).

For ¢ven m (=2n) we obtain

Re [A,.a,) = Re I:/i,,, ’%]:,_ ,]+ K, (81a)
with
” l ol b A
K; = Re [:27:—;; J;o (Zw,,—Z5W] ds:|. (81b)

From (22) and (80) it follows that K, — 0 as R — oo, which in turn leads to
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- 1,
Re [A,,,[G,,,W ";I_f,, . |jl] =0

for all A, {m # 2) and all Re {4.] for m = 2. Disregarding the ambiguity of rigid body

rotation we may write
1
G =—fo_y forallm=2n2>2
nt
For odd m (=2n+1) we shall use (47), (48). Here we observe that

w,o=0z1". Z,=0(:zI"""). asz— 0.

The analogue of (46} is
- | - o
Re [Amﬂm] = - 5&""‘; J; [.Yll(:" + Y]l*,',,] d3+ 1\7()

with

£ 1 5 =
A(, = - Re [ N J‘ [2| lr':n - Z:,, w t l d.\'].
Ty

2nm

Now (22) and (83) yield £y — 0 as R - oo, Therefore

" |
Re [A,a.,] = — "mﬁjﬁ (X, + ?,1*,‘,,] ds,
- &

(82)

(83)

(84a)

(84b)

(85)

Altogether we cun now state that the functions (22) represent a fundamental field of order

m for the z-plane with a crack along the negative real uxis.

The integrand in (85) does not necessarily vanish for points x < — T of the crack ; due
to (22), (83) it has order O(Jx|™ ¥?) as x - ~ co. Since we deal with a load of the induced

type the faces €', and C_ contribute equally to (85) and one may write
. t i
Re [A,4,] = — ;:;;:J [X,,+ V5] dx, with integrand on C, .

We have to observe

s 1
Bi+if, = X, +iY, +iF with p(x)= Y fixt

k=0

Along the segment [— L, 0] of { ~ T, 0] we have in particular

f;'{'i?; = i Zﬁ."‘.

Rwn

and for [~ oo, — T] we find
n—1
Xi+if, =ip(x) =i Y fud.
k=0

Since P}, vanishes along the crack the displacement wi, takes the simple form

(86)

@7

{88a)

(88b)
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wh =A.2"™° onC. 89

As a particular consequence (88b) and (89) we have

-T -T
J' (X, + ¥eh] de = —Re [A,,,J x|~ 2x"p (x) dx]

=Re[ Z( )*" {:+£TH“2]' (90)

In a similar vein the integral over (— L.0) in (86) can be evaluated. One obtains

]
J-L[X’lu,’,.-f- ¥,5] dx = Re [A }:( 1)~ "——L_*_——%L"‘"*”]. 1)

k=n n

Since (86) holds for any A,, the coefficient a,, is found by using A,, =1 and 4,, =i. We
write here the final form for a,, in thecase T = L:

a,,,=—;’—lkzo(—l)" "—{:+1L‘ nelil (92)

As before the coeflicients b, follow from (21b). Thus
b, = ':;_/;, y forevenm=2n (93a)
b, =d, forodd m. (93b)

6.2. Applications
Let the load be a constant pressure o, confined to the interval (- L,0) of the crack.
This means fy, = —oa, f, = 0fork 2 1 in (20). Formulas (82), (92), (93a, b) yield

ay=by,=4fy==4%a; ay,=by, =0 forn>1|, (94a)

=2(=1)""

md\/zl.’ forn=0,1,2,... (94b)

Arper = by =

With the aid of (79) one can determine ¢, p, in closed form. Using

P(N=0 fort< —L; P(t)y=—o(L+1) for —L<t<0, 95)
onc finds
=1 e(L+0)dt o 0 de a v de
b1 = ,,,=>£ TN T Srrn| =t | = 06
N T e Sla=- 2T de iy
Furthermore

e NZE N I U RN/ 2 V£ o7

+—lo .
2n “"\/|T(’— 2 2m g\/z_, p

so that
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B =py = o(L+P )+ 2\ L= (98)

The function ¢*(z) admits the expansion

| L& (=DAE/Ly
wfy — Y 1.2 !
¢*E) = -5+ @D k;, 2%+1

for |z| < L. (99)
One can use (98) and (99) to confirm (94a.b).

From (97) and (98) one can derive the response to a point force pressure Qat x = — L.
Elementary steps yield the new field functions

0 * l - — *
¢.=p.=Qﬁ[<L+:>¢ +;\/E]—Q¢- (100)

Although the formulas for the coefficients a,,. b,, have been derived with a view to regular
fields with continuous distribution of prescribed boundary data, the formulas of the previous
sections have more gencral validity. In particular (86) is applicable to the case on hand with
X, =X, ¥, = ¥, and yiclds immediately

nm

Re [A,.a,]) = — Qr‘,‘,,]
v - L
Q

nm

Re [4,.] —1)L " Y m=2n+1. (1o1)

This agrees with (99), (100). The coefficients of even order, ay, ay, ..., and b4, by, . . . vanish,

6.3. Body furces

If the regular clastic ficld, which we wish to analyze, is also caused by body forces then
there are no analytic functions ¢(2), p(z) to describe the field, and it makes little sense to
look for expansions (10) or (21a) as the case may be. There is a significant exception. If a
neighborhood of the origin = = 0 is free from body forces, then ¢, p exist in that neigh-
borhood. The expansions (10) or (21a), the latter under condition (20), exist as before. All
of the fundamental fields of this paper can be used in applications of the reciprocity theorem,
and formulas for the cocfficients «,,, b,, can be derived. They differ from (19), (41), (46)
etc., in only one respect : wherever the work integral

j [X|ll,£+ Y]L',{,] ds
R

appears, it has to be augmented by the analogous work of the body forces through the
displacements of the fundamental field. The sume applies to the modification (47).

If the body forces are everywhere, but of a simple nature, e.g. gravity, centrifugal
forces, it is recommended to split the regular field Finto two fields F = F, + F, where F,
responds to the body forces regardless of boundary conditions in as simple a way as possible.
Frequently £, can be found in closed and elementary form, for example Bueckner and
Giaever (1966). To the analysis of F, all the formulas of this paper can be applied.

7. CONCLUDING REMARKS

In this paper, we have gencralized Bueckner's fundamental field concept and developed
a theory of higher order weight functions for computing expansion coefficients for both
interior points and crack tips in linear elastic solids. For the expansion coefficients at crack
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tips. we have considered the fundamental fields for both open and closed crack geometries.
By following the procedure of Bueckner (1970), our results could be extended to analytic
cracks as well.

In general. closed form expressions of the fundamental fields and higher order weight
functions are limited to simple geometries and numerical procedures are required to compute
these higher order weight functions. A variational principle developd by Sham (1987) for
determining singular fields in elastic bodies of finite size can be used to this purpose. A
finite element implementation of the variational principle has been carried out for computing
fundamental fields of first order (for calculating stress intensity factors) in two dimensions
(Sham, 1987), and in three dimensions (Sham and Zhou, 1989). and an implementation
has also been performed for computing fundamental fields for interface notch tip in anti-
plane strain (Sham {988a). In this procedure, only a single finite element analysis of the
given geometry with fixed boundary (traction versus displacement) partition is required to
generate the fundamental field. The same variational principle can also be used to obtain
a finite element procedure for computing the higher order weight functions. [t is reported
in a separate work (Sham, 1988b).

Acknowledgement—1t is a great pleasure to acknowledge the guidance and advice of Dr. H. F. Bueckner
throughout the course of this work.
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